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ABSTRACT
Driven by the needs of Flink to expand the offline engine to a hy-
brid one, a new machine learning (ML) library, called SOLMA is
proposed. This library aims to cover online learning algorithms for
data streams. In this setting, data streams are processed sequen-
tially example by example. SOLMA, which is under development,
currently contains two classes of algorithms: (i) basic streaming
routines such as online sampling, online PCA, online statistical
moments and (ii) advanced online ML algorithms covering in par-
ticular classification, regression and drift/anomaly detection and
handling. This paper briefly highlights the concepts underlying
SOLMA.
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1 INTRODUCTION
Learning from high volume and high velocity continuous flow of
data poses scientific challenges that need to be addressed. We aim at
designing and developing a library of scalable streaming algorithms
for predictive analytics and automatic knowledge discovery called
SOLMA, standing for Scalable Online machine Learning and data
Mining Algorithms. It is very important to underline the fact that
there exist few attempts to develop machine learning libraries for
big data platforms that handle data streams. Hence, the primary
goal of SOLMA is to contribute to the development of new online
learning algorithms for high speed data streams.

The current state of the art of machine learning (ML) algorithms
for Big Data is dominated by offline learning algorithms that process
data often stored in the cloud. Offline algorithms use “full memory”
which corresponds to iterative learning using the whole data [12].
In such setting, data can be revisited as many times as desired. In
online learning, on the other hand, the algorithms see the data only
∗The corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SACBD@ECSA’18, September 2018, Madrid, Spain
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

once. To alleviate terminology ambiguities, by streaming algorithms,
we refer to sequential one-pass algorithms that do not see the data
more than once. Also we use streaming algorithms interchangeably
with online algorithms. In this later, algorithms are fully online,
operating with “no memory”. Although there have been many
developments related to online learning, the scalability remains
still an issue [23]. There is currently an increasing interest from the
machine learning and data mining communities to develop scalable
online machine learning algorithms that are capable of efficiently
handling continuous high-speed streams.

In streaming, ML algorithms should be adaptive and inherently
open-ended [3, 4] to be amenable to refinement if data continues to
arrive. When designing streaming algorithms, some criteria should
be observed such as: the ability to generate an anytime model
independently from the order of the training examples; use of a
single scan of the data and efficient processing of data in a constant
time; the ability to handle concept drift and novelty detection; and
competitively performing against their offline counterpart.

The current state-of-the-art of algorithms shows that not all
existing streaming algorithms meet the criteria mentioned earlier.
Often there is a confusion between online learning in the traditional
interpretation (data examples are processed sequentially, but the
algorithm can still recycle over the data) and the online streaming
algorithms where no recycling over the data is allowed. However,
when restricted to one pass, traditional online learning may turn to
be interesting if purposefully and adequately adapted. Nevertheless,
it is not clear how good they can scale up in presence of continuous,
high speed, and potentially distributed data streams.

From the perspective of Big Data, there exist many ML libraries
dedicated to batch processing. Some are for big data such as GraphLab,
Giraph, Pegasus, MLib and Mahout, while others are not. An al-
most exhaustive list of existing libraries is presented in a report
for the H2020 PROTEUS project1. A comparative analysis of these
libraries indicates that are almost all of them are developed for
batch processing. There has been few attempts to develop libraries
of streaming algorithms, mostly SOLMA and SAMOA. The idea
of SAMOA was to distribute and parallelise the algorithms of the
Massive Online Analytics (MOA) library targeting Storm and S4,
but currently contains very few ML algorithms.

This research has been driven by two main motivations: (i) the
need for scalable online learning algorithms to cope with high-
velocity streams and (ii) lack of such algorithms for Flink as a
novel big data platform. The advantageous feature of Flink from
the perspective of Machine Learning is that it brings both batch and
the stream processing together in the same environment as shown

1https://www.proteus-bigdata.com/app/download/9431544070/D4.3-
V5_final.pdf?t=1512389477
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Figure 1: SOLMA as a module of Flink

in Figure 1 [2, 14], leading to low latency and high throughput.
Therefore, SOLMA offers a response to the stream analytics needs
for such big data platform.

The rest of this paper is organised as follows. In Section 2, a brief
overview of SOLMA is given. Section 3 presents the technical and
conceptual considerations of SOLMA algorithms before the paper
is concluded in Section 4.

2 SOLMA LIBRARY
SOLMA intends to cover two classes of algorithms: basic streaming
routines such as moments, sampling, heavy hitters feature extrac-
tion, and advanced machine learning algorithms such as classifica-
tion, clustering, regression, drift handling and anomaly detection.

2.1 Basic algorithms
The list of basic algorithms to compute descriptive statistics consists
of the following:

• Online moments: simple mean, simple variance, weighted
mean, weighted variance, exponentially weighted mean and
variance, moving average, aggregation algorithm.

• Online sampling: Simple reservoir sampling [26], weighted
reservoir sampling [9] and adaptive reservoir sampling [1]

• Online frequent directions [13]
• Incremental principal component analysis [30].

2.2 Classification algorithms
• Online support vector machines (OSVM): SVM has proven to
be an efficient classification tool for batch learning. Recently,
an online version of SVM was proposed to cope with large
datasets. Examples of this approach are Pegasos [25] and
Norma [20].

• Online bi-level stochastic gradient for support vector machines
(OBSG-SVM) [28]: OBSG-SVM is proposed for adjusting SVM
with an online selection of the hyperparameterC . It is based

on the bi-level stochastic gradient algorithm for SVM (BSG-
SVM) [6]. In OBSG-SVM algorithm, we use a different vali-
dation method on the outer level of the bi-level optimisation
problem to enable the online selection of C . Convergence
to a stationary point has been proven in [7] with stochastic
moves.

• Online passive-aggressive algorithms (PA) [8]: PA is an exam-
ple of adversarial online learning. In each round, PA receives
a data point and predicts its label. After the prediction, the
correct label is revealed and the algorithm suffers an instan-
taneous loss. PA updates the weight vector with a quantity
that minimises the suffered loss. It aggressively forces the
loss to be zero and passively makes sure that the updated
weight vector will be not too far from the previous weight
vector.

2.3 Regression algorithms
• Online ridge regression (ORR): The algorithm performs the
well studied ridge regression algorithm [16] in online mode.
Ridge Regression adds a L2 norm penalty term to ordinary
least squares regression to deal withmulticollinearity amongst
regression predictor variables.

• Online shrinkage via limit of Gibbs sampling (OSLOG): The
algorithm is an online version of shrinkage via limit of Gibbs
sampling (SLOG) [24]. OSLOG uses an L1 norm penalty re-
sulting in a difficult problem to bound because L1 norm is
non differentiable but is convex. An approximation has been
used to obtain sparsity in the solution [18].

• Aggregating algorithm for regression (AAR): This algorithm
can be thought of as a game-theoretic version of ORR [27].
AAR algorithm is last-step min-max optimal [11], which
allows AAR to shrink the predictions. Due to shrinkage in
its prediction AAR is less likely to over-fit in comparison to
ORR. Also, AAR has a better upper bound on the cumulative
loss in comparison to ORR.

• Competitive online iterated ridge regression (COIRR): COIRR
can be thought of as a game-theoretic version of OSLOG.
The algorithm has the best upper bound on cumulative loss
under certain conditions [18].

2.4 Drift handling and anomaly detection
• Online weighted averaging passive-aggressive algorithm [29]:
This algorithm, WAPA, employs the weighted average (WA)
with passive-aggressive (PA) updates (See Sec 2.2). It pas-
sively retains the weighted average of the previous weight
vectors when the hinge loss is zero; otherwise, it reduces the
hinge loss suffered on the current data point less aggressively
than PA. WAPA enhances the robustness and the learning
ability when dealing with fluctuations (e.g. label noise).

• Online normalised least mean square regression (ONLMSR) [17]:
This algorithm is a competitive online regression algorithm.
It has the ability to handle drift based on first order infor-
mation and is computationally the most efficient regression
algorithm in SOLMA.

• Anomaly detection using incremental PCA: Candid covariance-
free incremental PCA (CCIPCA) [30] is used to compute
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PCs data incrementally without re-estimating the covariance
matrix. Anomaly detection uses Hotelling T 2 and squared
prediction error (SPE orQ). TheT 2 statistic detects variation
within the PC subspace. The Q statistic measures the lack of
fit of the data to the PCs.

3 CONCEPTUAL CONSIDERATIONS
Apache Flink is a stream processing framework that offers an open-
source software stack for implementing data processing applica-
tions at large scale. SOLMA users can make use of Flink which
generalises the concepts of the MapReduce programming model
to offer not only Map and Reduce functions but also high-level
transformations such as Join, Filter, Aggregations, Iterations, etc.
Moreover, Flink extends the (Key, Value) pair data model of MapRe-
duce by enabling the use of any Java or Scala data types making
data pre-processing tasks very convenient and concise for the user.

On the other hand, SOLMA developers can exploit the ability
of Flink to chain together different transformers and predictors,
resulting in a pipelined processing model which makes it easy
for developers to implement ML algorithms. SOLMA developers
can implement iterative algorithms by defining a step function
and embedding it into an iteration or a delta iteration [10] which
is then executed in Flink’s pipelined processing engine, where
intermediate results are forwarded ahead to next operator in the
pipelined execution.

In our experience we found various event controls and the win-
dowingmechanism in Flink very useful for implementing our online
learning algorithms since:

• windows over time allow sampling the data stream.
• windowing with Event Time semantics helps perform com-
putations over the streams when the arrival of events is
delayed or out of order.

• control events (checkpoint barriers, watermarks and itera-
tion barriers) are very useful for developers to control the
streaming rates and avoid back pressure [5].

The technical challenge in the design of distributed algorithms
is how to achieve lossless parallelism for the online learning al-
gorithms. In existing literature, parallelism is achieved by either
data parallelism [15, 22] or model parallelism [19, 21]. Data paral-
lelism requires replicating the model over different machines and
each model/machine receives chunks of data. The replicas of the
model on each machine synchronise the model parameters after a
fixed number of presentations . In contrast, the model parallelism
is partitioned in sub-models that correspond to different tasks.

Furthermore, although exposing a shared data is fairly straight-
forward, efficiently providing model parallelism in existing applica-
tions is non-trivial. It requires modifying machine learning algo-
rithms to ensure that the model is split such that the communication
costs are limited within each data presentation (this is zero for data-
parallelism). SOLMA’s goal is to provide a simple, general purpose
API that integrates easily with the Apache Flink framework, with
a wide variety of algorithms and reasonable development effort.
Hence, SOLMA limits itself to data parallelism.

In data-parallelism learning, model replicas are trained over mul-
tiple machines and each replica trains over a subset of the data.
All the distributed algorithms in SOLMA are implemented as Flink

programs, which are inherently parallel and distributed. During ex-
ecution, a stream has one or more partitions, and each operator has
one or more operator subtasks. The operator subtasks are indepen-
dent of one another and execute in different threads and possibly
on different machines. SOLMA achieves parameter synchronization
between machines by following the Master-Slave architecture. The
stream is distributed to workers and the master receives parame-
ters from each worker, master updates the parameter and sends
the updated parameters to each worker. Updates of parameters are
asynchronous when the communication between the master and
the workers is not synchronised, possibly due to the delay in the
arrival of the stream and the converse refers to the synchronous
case. The implementation of the parameter server [22, 31] allows
synchronisation of the model parameters between the workers and
the master.

4 CONCLUSION
In this short paper, we introduced SOLMA as a library for streaming
data developed for Flink. It is being populated by basic streaming
routines and advanced machine learning algorithms. Currently it
contains a number of scalable online algorithms. In the near future,
we aim to cover other algorithms, especially in the area of clustering,
semi-supervised and active learning.
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