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ABSTRACT

In this paper, regularised regression for sequential data is investigated and new ridge regression al-
gorithm is proposed. It uses the Aggregating Algorithm (AA) to devise an iterative version of ridge
regression (IRR). This algorithm is called AAIRR. A competitive analysis is conducted to show that
the guarantee on the performance of AAIRR is better than that of the known online ridge regression
algorithms. Moreover, an empirical study is carried out on real-world datasets to demonstrate the su-
perior performance over those state-of-the-art algorithms.

c© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of online regularised regression aims to predict

the outcome, lying on a real number line, for a given sequence

of data examples. In such a setting, the algorithm receives the

sequence example by example and attempts to predict the out-

come for each element before seeing the ground truth (actual

outcome). If there is a discrepancy between the predicted out-

come and the true one, the algorithm suffers a loss. This loss

adds up over the whole sequence to obtain the total loss. The

exact description of a learning environment can be thought of a

game defined by triple (Ω,Γ, λ) indicating a set of possible out-

comes, a set of allowed predictions and a function measuring

the loss respectively.

The protocol of online learning assumes that at each step t,

the learner receives a data example xt ∈ Rn which is processed

by a decision pool (i.e., set of experts) w ∈ Θ, whose prediction

is denoted by γw
t = w′xt. Ridge regression in this online setting

was studied by (Vovk, 2001; Azoury and Warmuth, 2001) lead-

ing to the following upper bound on the cumulative square loss:

LT (AAR) ≤ L∗T + aW2 + nY2 ln

(

1 +
TR2

a

)

(1)

where the data examples are taken from ℓ∞−ball {x ∈ R
n :

‖x‖∞≤ R}, the decision pool Θ = {w ∈ R
n : ‖w‖1≤ W} and

⋆⋆This work was funded by the EU Commission through the H2020 PRO-

TEUS project (Ref: 687691).
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y ∈ [−Y,Y] such that Y ≥ 0, a > 0, and L∗
T

is the best linear

forecaster in hindsight, given by:

L∗T = inf
w

T
∑

t=1

(w′xt − yt)
2

The algorithm introduced by Vovk (2001) is derived us-

ing a Bayesian strategy, while the algorithm proposed by

Azoury and Warmuth (2001) exploits the duality properties of

the exponential family distributions. A simplification of the

analysis is presented in (Forster, 1999) using min-max optimi-

sation. Essentially the learner’s prediction can be obtained by

solving the following optimisation problem:

argmin sup
y ∈[−Y,Y]















LT (Learner) − inf
w∈Rn















a‖w‖22 +
T

∑

t=1

(yt − γw
t )2





























(2)

Later Cesa-Bianchi and Lugosi (2006) obtained a similar bound

as (1) by using a gradient-based forecaster with time varying

elliptical potentials.

To derive the proposed learning algorithm AAIRR, we will

rely on the approach described by Forster (1999). We will

then follow the approach by Vovk (2001) to obtain a guaran-

tee for AAIRR and thus providing a connection with Laplace

prior which is well understood within the statistical literature

on similar matter.

Most of the existing literature proves the performance guar-

antee for ℓ2 norm. However, the Iterative Ridge Regression

(IRR) has not been studied in the online setting. For instance,

Schmidt (2005); Tibshirani (1996), and Fan and Li (2001) pro-

posed some algorithms for offline ridge regression by consider-

ing wk+1 ∈ R
n where k denotes the number of passes with the



2

condition wi 6= 0 for i = 1, 2, · · · , n:

‖wk+1‖1≈
n

∑

i=1

(

wk+1
i

)2

|wk
i
|
= ‖D−

1
2

wk wk+1‖22 (3)

such that D
− 1

2

wk = diag(1/

√

|wk
1
|, ..., 1/

√

|wk
n|). In (Fan and Li,

2001), it is argued that (3) is a good approximation to ℓ1 norm

due to its similarity with the Newton’s method, see for example

(Kelley, 2003).

In the present work, it is shown that by scaling the ridge

penalty, one can obtain a better regret than (1) under certain

circumstances. For the sake of comparison we bound the input,

output and the decision pool. The proposed AAIRR is com-

pared against the Aggregating Algorithm for Regression (AAR)

theoretically and empirically.

In summary, the major contributions of this work are as fol-

lows:

1. Derivation of AAIRR.

2. Provision of a competitive analysis for AAIRR to show the

circumstances under which it is better than the algorithm

proposed in (Vovk, 2001) and (Azoury and Warmuth,

2001).

3. Carrying out an empirical study and comparing AAIRR

against the state-of-the-art algorithms.

The organisation of the rest of this paper is as follows. Section 2

describes the AAIRR algorithm. Section 3 and 4 presents math-

ematical and empirical analysis of AAIRR before concluding in

Section 5.

2. Problem formulation and Derivation of AAIRR

Given a sequence of instances and their corresponding out-

comes i.e. (x1, y1), · · · , (xt, yt). Let γw
t : Θ → Γ denote the

prediction given by the decision strategy/expert at time t. Let

wt,i (i = 1, · · · , n) denotes the i−th component of the decision

vector wt at time t and γt is the prediction given by the learner.

Then the operational cycle of the proposed AAIRR follows Pro-

tocol 1. The overarching goal is to ensure that the loss of the

Protocol 1. Online Regression

FOR t = 1, 2, ...

(1) Read input xt ∈ Rn

(2) Learner outputs γt ∈ Γ
(3) Receive outcome yt ∈ [−Y,Y]

(4) Update weights w ∈ Θ
END FOR

learner:

Lt(Learner) =

t
∑

s=1

(ys − γs)
2 (4)

is almost as good as the loss of the best expert w (optimal weight

vector):

Lt(w) :=

t
∑

s=1

(ys − γw
s )2 (5)

Assuming that the input is taken from the ℓ∞− ball of radius R:

{xt ∈ R
n : ‖x‖∞≤ R} and the vector w is indexed by Θ = {w ∈

R
n : ‖w‖1≤ W}. Let us define the following quantities:

bt :=

t
∑

s=1

ysxs ∈ Rn (6)

At :=















aD−1 +

t
∑

s=1

xs ⊗ xs















∈ Rn×n, a > 0 (7)

and

D−1 = diag(1/C, ..., 1/C) (8)

where ‖w‖1≥ C 6= 0 and let w to be initialised in R
n uniformly.

Let also ▽ f (w) denote the first derivative of f and H▽ f (w) the

second derivative with respect to w and H is the Hessian ma-

trix. The aim is to compete against the iterative ridge regres-

sion algorithm (IRR), which was suggested as an approximate

solution for the following problem:

inf
w∈Rn

(Lt(w) + a‖w‖1) (9)

where a > 0. The problem (9) is very difficult to bound because

ℓ1 norm is not differentiable, but it is convex. Hence, one may

use sub-differentiation. Unfortunately, the problem is that the

sub-differentiation of ℓ1 norm does not lead to a unique dual

vector. Thus, given the training data X ∈ R
p×n and the corre-

sponding target output Y ∈ R
p, substituting (3) into (9)1 gives

an expression similar to that of ridge regression, which is as fol-

lows (see Equation (22) in (Schmidt, 2005) and Equation (7) in

(Rajaratnam et al., 2016)):

wk+1 =
(

X′X + aD−1
wk

)−1
X′Y (10)

where D
− 1

2

wk = diag(1/

√

|wk
1
|, ..., 1/

√

|wk
n|). Notice that this for-

mulation corresponds to the offline learning setting. The online

setting requires solving the following optimisation problem:

inf
w∈Rn

(

Lt(w) + a‖D− 1
2 w‖22

)

(11)

For the sake of comparison and interpretation, we use Cauchy-

Schwartz inequality to obtain following:

(12)inf
w ∈Rn

(

Lt(w) + a‖D− 1
2 w‖22

)

≤ inf
w∈Rn

(

Lt(w) +
a

C
‖w‖22

)

This is inequality will be proven later. Like AAR, we consider

the exponential discounting of the predictions:

Pt(dw) = e
− 1

2Y2 (yt−γw
t )2

Pt−1(dw) (13)

for all measurable set E ∈ Rn:

Pt(E) =

∫

E

e
− 1

2Y2 (yt−γw
t )2

Pt−1(dw)

1For details on the derivation of the offline IRR algorithm, see Section 4.4.2

in (van Wieringen, 2018)
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We set the prior for all t to be:

P0 =















a 1
2Y2

2















n

exp

(

−a
1

2Y2

W2

C

)

(14)

such that C ≤ ‖w‖1≤ W, C 6= 0 and w is initialised with the

vector 1. Essentially, we replace e
−a 1

2Y2 ‖w‖22 in the Gaussian prior

by e
−a 1

2Y2 w′D−1w
and

(

a 1

2Y2

π

)

1
2

by
a 1

2Y2

2
. While in AAR only the

initial distribution, P0, is set to be Gaussian prior, in AAIRR the

selected distribution over the weights is inspired by the Laplace

distribution.

The Laplace distribution (Tibshirani, 1996) is written as:

P0 =
1

2τ
e‖w‖1 |/τ

where τ = 1
λ

and λ > 0. In this paper, τ = 1
aη

(a > 0) and

η = 1
2Y2 . This leads to the following Lemma:

Lemma 1. For a prior (14), denoted by P0, and 0 < C ≤
‖w‖1≤ W, w0 = 1 on the topology of Γ ∈ R and t = 1, 2, ..., the

cumulative loss of the Modified-Aggregating-Pseudo-Algorithm

(MAPA) is:

Lt(MAPA) ≤ logβ

∫

Θ

βLt(w)P0(dw)

where β = e
− 1

2Y2

Proof. We use induction to prove the Lemma. The pseudo-

prediction is defined as:

gt(y) = logβ

∫

Θ

β(yt−γw
t )2

P∗t−1(dw)

where P∗
t−1

(dw) =
Pt−1(dw)

Pt−1(Θ)
such that Pt(Θ) =

∫

Θ
Pt(dw). For

t = 1, then Lt(MAPA) = g1(y) (assuming this holds for t − 1).

We consider Lt(MAPA) = gt(y) + Lt−1(MAPA), the following

holds:

Lt(MAPA) = logβ

∫

Θ
β(yt−γw

t )2

Pt−1(dw)

Pt−1(Θ)
+ logβ

∫

Θ

βLt−1(w)P0(dw)

(15)

For 0 < C ≤ ‖w‖1≤ W, eq. (13) can be written as:

Pt−1(dw) = β(yt−1−γw
t−1

)2+...+(y1−γw
1

)2















a 1
2Y2

2















n

exp

(

−a
1

2Y2

W2

C

)

= βLt−1(w)P0(dw)

(16)

It follows that:

(17)
Lt(MAPA) ≤ logβ

∫

Θ
β(yt−γw

t )2+Lt−1(w)P0(dw)

Pt−1(Θ)

+ logβ

∫

Θ

βLt−1(w)Pt−1(dw)

βLt−1(w)

Lt(MAPA) ≤ logβ

∫

Θ
β(yt−γw

t )2+Lt−1(w)P0(dw)

Pt−1(Θ)
+ logβ Pt−1(Θ)

(18)

= logβ
Pt−1(Θ)

∫

Θ
β(yt−γw

t )2+Lt−1(w)P0(dw)

Pt−1(Θ)
= logβ

∫

Θ

βLt(w)P0(dw)

(19)

Therefore, the statement holds ∀t ≥ 1.

In the previous lemma, we confirmed that the foundation on

which the prediction stand is correct. Now we optimise the

weights, that is, we choose the best expert (strategy) from the

decision pool using the following Lemma.

Lemma 2. For all t ≥ 0, f (w) := a‖D− 1
2 w‖2

2
+Lt(w) is minimal

at a unique point w and the function f (w) is given as follows:

w = A−1
t bt and f (w) =

t
∑

s=1

y2
s − b′t A

−1
t bt

such that none of the elements of the weight vector has its ab-

solute value at any step equal to zero. The definition of bt, At,

D−
1
2 and Lt(w) is given in (6), (7), (8) and (5) respectively.

Proof. Please see Appendix A.1.

Theorem 1. Let the distribution on the weights of the decision

pool be (14). The prediction γt given by AAIRR is b′
t−1

A−1
t xt,

where bt and At are as defined in (6) and (7) respectively.

Proof. Please see Appendix A.2.

The following Lemma can be used to lift the condition of

C 6= 0 in (8), to obtain line 4 in Protocol 2 for formulating the

AAIRR protocol.

Lemma 3. For all s = 1, 2, ..., t, a > 0















aD−1 +

t
∑

s=1

xs ⊗ xs















−1

= D
1
2















aI + D
1
2















t
∑

s=1

xs ⊗ xs















D
1
2















−1

D
1
2

Proof. From the properties of a diagonal matrix, it follows that:















aD−1 +

t
∑

s=1

xs ⊗ xs















−1

=















aD−
1
2 D−

1
2 +

t
∑

s=1

xs ⊗ xs















−1

= D
1
2















aI + D
1
2















t
∑

s=1

xs ⊗ xs















D
1
2















−1

D
1
2

3. Analysis

The following corollary presents the limiting behaviour of

AAIRR. It shows that as ‖xt‖→ ∞, γt → 0, thus making

AAIRR less likely to overestimate predictions in comparison

to the usual convex optimisation methods that predict by multi-

plying the optimal decision strategy from the decision pool by

xt (Cesa-Bianchi and Lugosi, 2006).
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Protocol 2. AAIRR

Initialise: a > 0, A = 0n×n, b = 0n×1 and

w = 1 ∈ Rn×1.

FOR t = 1, 2, ...,

(1) Read xt ∈ Rn

(2) D = diag(
√

abs(w)) (Regularisation)

(3) A = A + xt ⊗ xt (Covariance matrix)

(4) A−1 = D (aI + DAD)−1 D (Lemma 3)

(5) γt = b′A−1xt (Corollary 1)

(6) Read yt ∈ R
(7) b = b + yt xt (convention)

(8) w = A−1b (Lemma 2)

END FOR

Corollary 1. For all s = 1, 2, ..., t, the AAIRR’s prediction is is

follows:

γt =
st

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

where

st =

















t−1
∑

s=1

ysxs

















′

D
1
2

















aI + D
1
2

















t−1
∑

s=1

xs ⊗ xs

















D
1
2

















−1

D
1
2 xt

Proof. Please see Appendix A.3.

The rest of this section provides the upper bounds on the cu-

mulative square loss for AAIRR. The main objective is to de-

duce the circumstances under which AAIRR has a better regret

than AAR (i.e., it has better upper bound on the cumulative

square loss in the online setting). To achieve this goal first the

performance guarantee of AAIRR is obtained. Then, the input

and weights are bounded to simplify the comparison. Finally,

the regret of AAIR and AAIRR is compared.

Lemma 4. The following upper bound on the cumulative

square loss holds:

Lt(AAIRR) ≤ logβ

∫

Θ

βLt(w)P0(dw)

Proof. The square loss function is η−mixable. For details on

mixability of the loss functions see (Haussler et al., 1994; Vovk,

1990).

Lemma 5. For D ∈ R
m×n with entries ai j and w ∈ R

n with

entries w j

‖Dw‖22≤ ‖D‖
2
F‖w‖22

Proof. From Cauchy-Schwartz inequality:
















m
∑

i=1

n
∑

j=1

a2
i j

















n
∑

k=1

wk

=

m
∑

i=1

















n
∑

j=1

a2
i j

n
∑

k=1

(wk)2

















≥
m

∑

i=1

















n
∑

j=1

ai jw j

















2

Remark 1. For n = m in Lemma 5

















m
∑

i=1

m
∑

j=1

a2
i j

















m
∑

k=1

wk ≥
m

∑

i=1

















m
∑

j=1

ai jw j

















2

By definition ‖D‖2
F
= Tr(DDH), where Tr denotes the trace of a

matrix and DH is the conjugate transpose. In other words, ‖D‖2
F

is the Sum of Squares (SS) of the absolute value of the entries

of D. Also, if D is a diagonal matrix, then ‖D‖2
F

is the sum of

squares of diagonal elements. This justifies the inequality (12).

Bounding ‖xt‖∞≤ R and ‖w‖1≤ W for s = 1, 2, ..., t, then from

Lemma 5, we have:

wD−1w ≤
‖w‖2

2

C
≤
‖w‖2

1

C
≤ W2

C
(20)

We also need to upper bound the following:

ln det At = ln det















aD−1 +

t
∑

s=1

xs ⊗ xs















To do that, we use (Beckenbach and Bellman, 1961), Theorem

7 in Chapter 2, to obtain:

ln det At ≤ n ln
(

aC−1 + tR2
)

= n ln
a +CtR2

C
(21)

We now bound the loss of AAIRR, by using Lemma 4 and Re-

mark 1.

Theorem 2. For any point in time s = 1, 2, ..., t and any a > 0

such that ‖xt‖∞≤ R and C ≤ ‖w‖1≤ W, the following holds:

Lt(AAIRR) ≤ L∗t + aW2C−1 + nY2 ln

(

8Y2(a +CtR2)

a2Cπ

)

such that C 6= 0.

Proof. From Lemma 4, Lt(AAIRR) ≤ Lt(MAPA) and the rest

of the proof is shown in Appendix A.4.

Remark 2. Lt(IRR) = infw

(

Lt(w) + a‖D− 1
2 w‖2

2

)

can be written

as
∑T

t=1 y2
t − b′A−1b (see Lemma 2), where A−1 is defined as in

Lemma 3, and (21) becomes n ln(aW + tW2R2). Also, the upper

bound on the determinant of AAIRR is ln 16Y4

a2π
(W(a + tWR2))

compare to AAR’s one which is ln a+tR2

a
. When W ≤ 1, then

infw

(

Lt(w) + a‖w‖2
2

)

= Lt(RR) ≤ Lt(IRR). By setting a ≥ 16Y4

π

one can ensure that ln 16Y4

a2π
(W(a + tWR2)) ≤ ln a+tR2

a
, because

ln
16Y4(W(a+tWR2))

aπ(a+tR2)
≤ 0. Nevertheless, this way of analysis does

not provide a clean comparison of AAR and AAIRR. It however

indicates that AAIRR has a better bound when ‖w‖1≤ 1 and the

noise term has a greater influence on the prediction accuracy

than the true regression function.

The following Theorem presents circumstances under which

the regret of AAIRR is better than AAR’s.

Theorem 3. Let Rt = Lt(Learner)−Lt(w) (see eqs. (4) and (5))

‖xt‖∞≤ R, C ≤ ‖w‖1≤ W and n be some positive integer. Then

∀t, Rt(AAIR) ≤ Rt(AAR) when C ≥ 1 and a ≥ 8Y2

π
.
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Fig. 1. AAR’s penalty vs. AAIRR’s penalty.

Proof. To prove this Theorem, it is sufficient to show that

Rt(AAIR) − Rt(AAR) ≤ 0. From (1) and Theorem 2, we have

the following:

aW2

(

1

C
− 1

)

+ nY2 ln

(

8Y2(a +CtR2)

a2Cπ

)

− nY2 ln

(

a + tR2

a

)

≤ 0

Thus,

aW2

(

1

C
− 1

)

+ nY2 ln
8Y2(a +CtR2)

aCπ(a + tR2)
≤ 0

C ≥ 1, aW2
(

1
C
− 1

)

≤ 0. Also, from Lemma 5, it is clear that

‖w‖2
2
≥ ‖D− 1

2 w‖2
2

for C ≥ 1. The condition a ≥ 8Y2

π
ensures that

πaC(a + tR2) ≥ 8Y2(a +CtR2). This concludes the proof.

Remark 3. Figure 1 shows that AAIRR penalty resembles

ℓ1−norm (also known as LASSO) in contrast to AAR’s ℓ2−norm

(also known as ridge penalty).

4. Empirical study

In the following we show the empirical performance of

AAIRR through a set of experiments. Specifically, we will

compare it against state-of-the-art algorithms: RLS (Hayes,

1996), AROWR(Crammer et al., 2009), AAR/ORR(Vovk,

2001), ONS (Orabona et al., 2012) and the optimal offline solu-

tion. To achieve a fair comparison, five (5) datasets are consid-

ered differing from each other in terms of amount of outliers,

noise, complexity (dimensionality) and volume (size). In the

following, a brief description of the datasets:

• The Istanbul stock exchange (ISE) dataset (Akbilgic et al.,

2014) - 536 observations with 8 attributes that are: S&P

500 Index, Deutscher Aktien Index, FTSE 100 Index,

Nikkel Index, Bovespa Index, Bovespa Index, MSCI Eu-

rope Index and MSCU Emerging Markets Index. This

dataset is chosen due to its simplicity. There is no noise

or outlier(s).

• Gaze dataset (Quinonero-Candela et al., 2006) consists of

450 observations of 12 features related to measurements

obtained from head-mounted cameras for eye tracking, es-

timating the positions of the eyes of the subject when the

subject is looking at the monitor. This dataset is chosen

due to the presence of outlier(s).

• The NO2 dataset (Vlachos and Meyer, 2005) consists of

500 observations from a road air pollution study collected

by the Norwegian Public Roads Administration, measured

at Alnabru in Oslo, Norway, between October 2001 and

August 2003. There are 7 predictor variables: the loga-

rithm of the number of cars per hour, temperature (×2),

wind speed and direction, hour of the day and the date

when the observations were taken. This dataset is chosen

because it shows non-linearity.

• Ailerons (F − 16) dataset (Van Rijn et al., 2013) consists

of 13750 observations with a total of 40 attributes that de-

scribe the status of the F − 16. This dataset is chosen due

to its complexity; it has the highest number of features and

illustrates algorithms shrinkage ability.

• Weather dataset (Budincsevity, 2016) has historical

weather around Szeged, Hungary, from 2006 to 2016 with

9 features namely: temperature, apparent temperature, hu-

midity, wind speed, wind bearing, visibility, cloud cover,

precipitation type and summary. In total there are 96453

observations. This dataset is chosen due to its consider-

able size; it has the highest number of observations among

all datasets.

Table 1 shows the statistical properties of the datasets.

.

To run the experiments, we observed the following:

• For all algorithms setting tuning parameter or the learning

rate as 1
T

, where T denotes the length/size of the dataset.

Clearly, it is assumed that the length of the dataset is

known in advance.

• The naive baseline (using yt−1 as prediction for yt) is also

reported.

• We consider a solution optimal after exhausting the whole

dataset, that is: Xw∗, where X ∈ R
T×n since it has direct

link to the theoretical results (see Lemma 2). The bounds

given are compared against L∗
T
= infw‖Y−Xw‖2

2
, which is

the optimal loss considered and w∗ = argminw‖Y − Xw‖2
2
.

This means the baseline uses the optimal weights, where

the optimal loss is achieved.

Table 2 reports the root mean square error (RMSE), coef-

ficient of determination (R2), mean absolute error (MAE) and

error quantiles: lower quantile error (LQE (25%)), mean quan-

tile error (MQE (50%)) and upper quantile error (UQE (75%)).

The main outcomes of the comparison are:

• AAIRR is overall the best algorithm in terms of RMS E,

R2 and MAE among the algorithms (AROWR and RLS

fail to give a sensible result on the weather dataset).
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Table 1. Statistical properties of the datasets: Cook distance, mean and variance

dataset max.cook.dist min.cook.dist med.cooks.dist label mean label variance lr.model variance

Gaze 1.90 × 10−1 1.35 × 10−8 7.18 × 10−4 5.44 × 102 6.31 × 104 3.29 × 103

ISE 1.37 × 10−1 7.28 × 10−10 4.23 × 10−4 1.55 × 10−3 4.46 × 10−4 3.23 × 10−5

NO2 4.25 × 10−2 3.11 × 10−8 7.52 × 10−4 2.18 × 10−6 1.00 × 100 4.98 × 10−1

F − 16 5.10 × 10−2 1.50 × 10−6 2.30 × 10−5 −8.68 × 10−4 1.69 × 10−7 3.01 × 10−8

Weather 9.18 × 10−6 1.61 × 10−15 9.83 × 10−4 1.09 × 10 1.14 × 102 1.15 × 100

Table 2. Performance of the algorithms on 5 real-world dataset

Algorithm RMSE R2 MAE LQE MQE UQE
dataset: Gaze

AROWR 4.88 × 1014 5.91 × 10−5 3.21 × 1013 −3.31 × 1012 −1.20 × 1012 −3.69 × 1011

RLS 2.19 × 1017 1.19 × 10−4 1.35 × 1016 −6.26 × 1014 −6.23 × 1012 −7.61 × 1011

ORR 2.19 × 1017 1.19 × 10−4 1.35 × 1016 −6.26 × 1014 −1.55 × 1010 −1.77 × 109

AAR 1.48 × 105 7.63 × 10−3 1.26 × 105 −1.84 × 104 −1.26 × 105 −6.23 × 104

ONS 5.33 × 103 9.91 × 10−4 1.06 × 103 −5.52 × 102 −5.84 × 10 6.69 × 102

AAIRR 1.61 × 102 6.65 × 10−1 1.03 × 102 −2.04 × 10 4.37 × 10 1.13 × 102

Naive 3.66 × 102 3.44 × 10−3 2.99 × 102 −2.70 × 102 1.95 × 10 2.73 × 102

Xw∗ 5.65 × 10 9.49 × 10−1 4.48 × 10 −3.94 × 10 −2.25 × 100 3.51 × 100

dataset: F−16

AROWR 1.29 × 1011 1.22 × 10−4 1.15 × 1010 −1.22 × 108 1.21 × 107 4.66 × 108

RLS 1.25 × 1011 2.70 × 10−4 1.10 × 1010 −1.37 × 108 1.44 × 107 5.09 × 108

ORR 1.75 × 107 2.83 × 10−4 1.60 × 106 −2.30 × 104 3.17 × 103 8.50 × 104

AAR 4.62 × 10−1 1.64 × 10−4 1.41 × 10−1 −4.70 × 10−2 8.49 × 10−4 4.84 × 10−2

ONS 2.30 × 104 1.11 × 10−2 1.79 × 104 −1.23 × 104 1.29 × 103 1.72 × 104

AAIRR 2.08 × 10−4 7.82 × 10−1 1.51 × 10−4 −7.32 × 10−5 4.21 × 10−5 1.39 × 10−4

Naive 2.75 × 10−4 6.05 × 10−1 2.09 × 10−3 −1.00 × 10−4 −1.00 × 10−4 −1.00 × 10−4

Xw∗ 1.73 × 10−4 8.24 × 10−1 1.27 × 10−4 −9.15 × 10−5 3.36 × 10−6 9.98 × 10−5

dataset: NO2

AROWR 3.11 × 105 1.09 × 10−1 1.40 × 105 −5.02 × 104 −4.29 × 103 3.81 × 104

RLS 3.15 × 105 1.14 × 10−1 1.46 × 105 −5.90 × 104 −5.63 × 103 4.27 × 104

ORR 8.90 × 102 1.59 × 10−1 4.78 × 102 −2.38 × 102 −2.51 × 10 1.69 × 102

AAR 4.35 × 10 1.95 × 10−1 3.24 × 10 −3.16 × 10 5.71 × 100 1.37 × 10

ONS 8.25 × 10−1 4.04 × 10−1 6.23 × 10−1 −4.78 × 10−1 2.07 × 10−2 5.11 × 10−1

AAIRR 7.31 × 10−1 4.69 × 10−1 5.72 × 10−1 −3.56 × 10−1 1.48 × 10−1 5.58 × 10−1

Naive 1.09 × 100 1.58 × 10−1 8.19 × 10−1 −6.04 × 10−1 −2.74 × 10−2 5.99 × 10−1

Xw∗ 7.01 × 10−1 5.07 × 10−1 5.47 × 10−1 −4.13 × 10−1 3.65 × 10−2 4.62 × 10−1

dataset: ISE

AROWR 1.80 × 10−2 3.00 × 10−1 1.30 × 10−2 −8.62 × 10−3 9.20 × 10−4 1.01 × 10−2

RLS 1.01 × 10−1 5.94 × 10−1 7.17 × 10−2 −5.72 × 10−2 −1.42 × 10−2 1.28 × 10−2

ORR 2.79 × 10−2 4.85 × 10−1 1.98 × 10−2 −1.58 × 10−2 −4.04 × 10−4 1.23 × 10−2

AAR 2.00 × 10−2 3.77 × 10−1 1.48 × 10−2 −1.19 × 10−3 2.04 × 10−3 1.22 × 10−2

ONS 2.08 × 10−2 5.50 × 10−1 1.56 × 10−2 −9.54 × 10−3 2.57 × 10−3 1.34 × 10−2

AAIRR 7.61 × 10−3 8.77 × 10−1 5.07 × 10−3 −4.25 × 10−3 −1.47 × 10−4 3.21 × 10−3

Naive 2.87 × 10−2 5.22 × 10−3 2.14 × 10−2 −1.77 × 10−2 −1.38 × 10−3 1.61 × 10−2

Xw∗ 5.64 × 10−3 9.29 × 10−1 4.30 × 10−3 −3.351 × 10−3 3.02 × 10−4 3.24 × 10−3

dataset: Weather

AROWR − − − − − −
RLS − − − − − −
ORR 5.38 × 1015 1.55 × 10−5 1.34 × 1014 −9.16 × 1010 −3.60 × 108 4.46 × 109

AAR 3.90 × 107 3.16 × 10−4 1.53 × 106 −7.72 × 105 5.06 × 105 −2.56 × 105

ONS 5.73 × 105 5.17 × 10−1 5.51 × 105 −6.63 × 105 −5.58 × 105 4.50 × 105

AAIRR 1.09 × 100 9.89 × 10−1 8.49 × 10−1 −7.33 × 10−1 −1.13 × 10−1 6.56 × 10−1

Naive 1.81 × 100 9.71 × 10−1 1.21 × 10−1 −9.00 × 10−1 −2.22 × 10−2 9.22 × 10−1

Xw∗ 1.07 × 100 9.89 × 10−1 8.43 × 10−1 −7.29 × 10−1 −1.05 × 10−1 6.61 × 10−1
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• None of the algorithms is able to outperform Xw∗ on any

of the datasets. However, on the weather dataset, AAIRR

is very close to the optimal solution in terms of RMSE and

MAE. AAIRR achieves the optimal solution in terms of R2

outperforming the naive baseline on all datasets.

5. Conclusion

In this paper, we proposed a new algorithm, AAIRR, and

showed its performance guarantees. The theoretical analysis

indicates that AAIRR has a better guarantee than AAR by set-

ting C > 1 - see Theorem 3. The empirical study on number of

real-world datasets shows the superiority of AAIRR.

In the future, the presented analysis will be extended to the

stochastic setting and to study the algorithm using different loss

functions (i.e., the logarithmic loss). Also, it is worth noting

that tightness of AAR and AAIR bound is still an open prob-

lem.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 2

By definition, we have:

f (w) = a‖D− 1
2 w‖22+

t
∑

s=1

(ys − w′xs)
2

= aw′D−1w +

t
∑

s=1

(y2
s − 2ysw

′xs + w′(xs ⊗ xs)w)

=

t
∑

s=1

y2
s − 2w′

t
∑

s=1

ysxs + w′














aD−1 +

t
∑

s=1

xs ⊗ xs















w

=

t
∑

s=1

y2
s − 2w′bt + w′At

=

t
∑

s=1

y2
s −















t
∑

s=1

2ysw
′xs















+ w′














aD−1 +

t
∑

s=1

xs ⊗ xs















w

Differentiating f (w) with respect to w (treating wt−1 as a con-

stant), we obtain:

▽ f (w) = 2

t
∑

s=1

ysxs + 2w′














aD−1 +

t
∑

s=1

xs ⊗ xs















=⇒ H▽ f (w) = 2aD−1 + 2

t
∑

s=1

xs ⊗ xs

Having ▽ f (w) = 0 − 2bt + 2Atwt and H▽ f (w) = 2At indicates

that f is convex and to attain its minimum, we set ▽ f (w) = 0

which gives w = b′t A
−1
t . Thus,

f (w) = f (b′t A
−1
t ) =

t
∑

s=1

y2
s − 2b′t A

−1
t bt + b′t A

−1
t AtA

−1
t bt

=

t
∑

s=1

y2
s − b′t A

−1
t bt

Appendix A.2. Proof of Theorem 1

In relation to Protocol 1, we use Lemma 2 to write:

arg inf
γt∈R

sup
yt∈[−Y,Y]















t
∑

s=1

(ys − γs)
2 −

t
∑

s=1

y2
s + b′t A

−1
t bt















(A.1)

= arg inf
γt∈R

sup
yt∈[−Y,Y]















t
∑

s=1

(ys − γs)
2 −

t
∑

s=1

y2
s + bt−1A−1

t bt−1

+ 2ytb
′
t−1A−1

t xt + y2
t x′t A

−1
t xt















=⇒ arg inf
γt∈R

sup
yt∈[−Y,Y]

(

−2ytγt + γ
2
t + 2ytb

′
t−1A−1

t xt + y2
t x′t A

−1
t xt

)

https://www.kaggle.com/budincsevity/szeged-weather
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(A.2)= arg inf
γt∈R

sup
yt∈[−Y,Y]

(

2yt(b
′
t−1A−1

t xt − γt) + y2
t (x′t A

−1
t xt) + γ

2
t

)

Given that yt ∈ [−Y,Y] and At is positive definite, γt should be

chosen in a way that:

2Y
(

bt−1A−1
t xt − γt

)

+ γ2
t (A.3)

(A.3) is minimised according to the following cases:

• Case 1: bt−1A−1
t xt ∈ [−Y,Y]. If bt−1A−1

t xt ≥ Y , then (A.3)

decreases when γt ≤ Y and increases when γt ≥ Y . Similar

argument holds for the case when bt−1A−1
t xt ≥ −Y . Thus,

(A.3) is attained at Y .

• Case 2: γt ≤ bt−1A−1
t xt attains its minimum on the domain

min(Y, bt−1A−1
t xt).

• Case 3: γt ≥ bt−1A−1
t xt attains the minimum on the domain

max(−Y, bt−1A−1
t xt).

Therefore, (A.1) attains the minimum for γt = bt−1A−1
t xt.

Appendix A.3. Proof of Corollary 1

The learner’s prediction is:

γt =

















t−1
∑

s=1

ysxs

















′

D
1
2















aI + D
1
2















t
∑

s=1

xs ⊗ xs















D
1
2















−1

D
1
2 xt

=

















t−1
∑

s=1

ysxs

















′

D
1
2

















aI + D
1
2

















t−1
∑

s=1

xs ⊗ xs

















D
1
2

















−1

D
1
2 xt

−
















t−1
∑

s=1

ysxs

















′
(

D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

)

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

×

(

D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

)′

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

xt

After some algebraic manipulation, we obtain:

γt =
st

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

(A.4)

Appendix A.4. Proof of Theorem 2

The bound on MAPA’s loss is given as follows:

Lt(MAPA) ≤ logβ

∫

Rn

dw















a 1
2Y2

2















n

× exp

(

− 1

2Y2
w′















t
∑

s=1

xs ⊗ xs + aD−1















w

+ 2
1

2Y2















t
∑

s=1

ysxs















w − 1

2Y2

t
∑

s=1

y2
t

)

(A.5)

Let Q(w) = w′Atw + bt−1w + x′tw, where At is symmetric pos-

itive definite matrix and xt,w, bt ∈ R
n. Using Theorem 3 in

(Beckenbach and Bellman, 1961), we have:

∫

Rn

eQ(w)dw = e−Q0
πn/2

√

det At

(A.6)

where Q0 = infw Q(w). Using (A.5) and (A.6), we obtain:

Lt(MAPA) ≤ inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ logβ

















































a 1
2Y2

2















n
πn/2

√

det
1

2Y2
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w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ logβ
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w

(
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2 w‖22

)

− 1

2
logβ































2

a 1
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2n
det 1

2Y2 At
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= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

− 1

2
logβ
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a2 1
2Y2

2
π

















n

det
1

2Y2
At

















= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

− 1

2

ln

((

4

a2 1

2Y2

2
π

)n

det 1
2Y2 At

)

ln β

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

− 1

2

ln
((

16Y4

a2π

)n
det At

2Y2

)

− 1
2Y2

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2ln

((

16Y4

a2π

)n

det
AT

2Y2

)

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2

(

n ln

(

16Y4

a2π

)

+ ln

(

det
At

2Y2

)
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Lt(AAIRR) ≤ inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+Y2

(

2n ln

(

4Y2

a
√
π

)

+ ln det
At

2Y2

)

Finally from (21), we obtain:

Lt(AAIRR) ≤ inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+Y2

(

2n ln
4Y2

a
√
π
+ n ln

a +CtR2

2Y2C
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2 w‖22

)
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16Y4
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)
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)

+ Y2
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2a2πY2C
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= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2

(

n ln

(

8Y2(a +CtR2)

a2Cπ

))

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ nY2 ln

(

8Y2(a +CtR2)

a2Cπ

)

(20) proves the statement.
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