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Abstract

Regularised regression uses sparsity and variance to reduce the complexity and

over-fitting of a regression model. The present paper introduces two novel reg-

ularised linear regression algorithms: Competitive Iterative Ridge Regression

(CIRR) and Online Shrinkage via Limit of Gibbs Sampler (OSLOG) for fast

and reliable prediction on “Big Data” without making distributional assump-

tion on the data. We use the technique of competitive analysis to design them

and show their strong theoretical guarantee. Furthermore, we compare their

performance against some neoteric regularised regression methods such as On-

line Ridge Regression (ORR) and the Aggregating Algorithm for Regression

(AAR). The comparison of the algorithms is done theoretically, focusing on the

guarantee on the performance on cumulative loss, and empirically to show the

advantages of CIRR and OSLOG.
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1. Introduction

Regularised regression is a general convex optimisation problem and is useful

in many real-world applications [1, 2]. L1 and L2 regularisation are the two most

popular regularisation methods for regression. L1 regularised regression aims to

obtain a sparse solution. When we require a model that outputs few non-zero5

entries we prefer L1 regularised regression [3, 4]. By setting prior belief about
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sparsity in the model, one can choose a suitable model [5]. On the other hand,

L2 regularised regression increases the bias and has lower variance than regres-

sion without regularisation and is a useful technique for dealing with data that

has high multicollinearity. Often statistical literature refers to L1 regularised10

regression as Least Absolute Shrinkage and Selection Operator (LASSO) and L2

regularised regression as Ridge Regression (RR). Both L1 and L2 regularisation

have their advantages and disadvantages. For detailed explanation see [6].

AAR and ORR algorithms compete against the least squares as a benchmark.

These online algorithms perform close to the benchmark in the worst case. Our15

proposed algorithms are in the same framework. However, unlike them we

consider IRR algorithm instead of RR. IRR was suggested by [6] for LASSO

approximation, but in [6] substantial details about the method were skipped,

[7] filled in the details and argued that IRR is an efficient method due to its

resemblance with the Newton method. Hence, the presented algorithms are20

close to L1 regularised regression, which consequently allows the algorithms to

have a better ability to deal with multicollinearity and sparsity in some sense.

Online learning framework in learning theory is formalised as a game played

between a learner and the nature [8]. The goal of the learner is to predict the

outcome that nature outputs. The learner updates its parameters after nature25

announces the actual outcome and the process is repeated for every new in-

put. So, online learning is useful when the application lends itself continuous

learning like a stockbroker who has to make regular decisions based on the ex-

perience acquired so far or when there is too much data that can’t fit into the

memory at once. Moreover, the input of the problem at hand may continu-30

ously evolve, that is, the underlying distribution of the input change over time

leading to what is known as concept drift [9, 10]. Other genuine applications of

online learning include click-through prediction, online advertising, marketing

optimisation, real-time bidding, trading, etc.

In this paper, we consider competitive prediction where we make no as-35

sumptions on the data generating process [11]. Competitive analysis is a type

of analysis for online learning algorithms where the upper bound is close to the
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batch optimisation problem. In our case, the comparison to batch optimisa-

tion problem is the minimum of the difference of sum of squares. Thus, we use

game-theoretic framework instead of combinatorial basis [12].40

Consider a perfect-information game played between three players. The

learner, the decision pool and the nature [13]. Let Ω denote the sample space, Γ

decision space and Θ the parameter space. For each trial, the learner chooses a

decision w : Θ→ Γ. The learner then makes prediction ŷt ∈ Γ, after which the

reality announces the outcome yt ∈ [−Y, Y ]. Here we consider fixed loss function

λ : Ω× Γ→ [0,∞]. The learner’s objective is to ensure that its cumulative loss

is at most equal to the cumulative loss of the the best decision strategy from

the decision pool. More precisely,

LT (Learner) ≤ cL∗T + p lnn (1)

where LT (Learner) =
∑T
t=1 λ(ω, ŷt) and L∗T =

∑T
t=1 λ(ω,wt). Here wt denotes

the prediction of the best learning strategy up until time t, c and p are constants

in R. The number of decision strategies are finite |Θ| = n. Inequality (1)

was proven in [14, 15], where it is not assumed that the outcomes announced

by nature are generated from some stochastic mechanism. The Aggregation

Algorithm for regression (AAR) presented in [16] is a popular algorithm in the

literature of competitive online prediction. In reference to perfect information

game; the learner is AAR; the decision pool is denoted by wt and the nature

generates input xt ∈ Rn and output yt ∈ R signals. It achieves the following

bound by confining the input and weights to the unit balls in the metrics L∞

and L1 respectively [16]:

LT ≤ L∗T +O(lnT ) (2)

where L∗T is the loss of RR on the data until trial T . In the present paper,

instead of RR we consider Iterated Ridge Regression (IRR) as a penalty to:

1. derive two novel algorithms, Competitive Iterative Ridge Regression (CIRR)

and Online Shrinkage via Limit of Gibbs Sampler (OSLOG) and we give

upper bounds on the cumulative loss. A comparison of the upper bounds45
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with state-of-the-art, reveals, that the CIRR and OSLOG upper bounds

are better in certain circumstances (Theorem 3 and Theorem 5).

2. compare the performance of CIRR and OSLOG against the optimal deci-

sion strategy and popular stat-of-the-art online algorithms, namely, AAR,

Online RR (ORR), Online Gradient Decent (OGD) and Online Newton50

Step (ONS), on synthetic and real-world adaptive sparse datasets (Section

6).

3. the two algorithms can obtain a faster and accurate regression in compar-

ison to other methods.

The paper is organised as follows. Section 2 reviews the relevant literature. Sec-55

tion 3 formulates the problem and introduces the notation. Section 4 gives the

details of CIRR. Section 5 shows that the Bayesian formulation of CIRR leads

to OSLOG. Section 6 discusses the empirical evaluation. Section 7 concludes

the paper.

2. Literature review60

The thought of comparing the best offline algorithm to online algorithms

originated from [17] and the term “competitive analysis” was first used by [18].

The adjective “online” mostly appears in computer science literature which is

synonymous with “prequential” in statistics. Prequential statistics introduced

by [19] makes predictions sequentially, rather than just expressing information65

about the parameters [20]. Probably [21] were the first to perform competitive

analysis on Bayesian mixing technique for the log loss prediction game. [22, 23]

presented an online algorithm that makes the prediction based on the weights.

Later [24] generalised the Bayesian mixing technique resulting in a new algo-

rithm called the Aggregation Algorithm (AA). By using AA with Gaussian prior70

one can obtain AAR regression algorithm which has a strong performance guar-

antee, as mentioned in the previous section. There are few variants of AAR

algorithm such as ARROW [25], RLS [26], ORR [16] etc.
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Algorithm Predictive complexity Time complexity bounded loss

OGD LT ≤ L∗T +O(
√
T ) O(n) Yes

ONS LT ≤ L∗T +O(lnL∗T ) O(n2) Yes

AAR LT ≤ L∗T +O(lnT ) O(n2) No

Table 1: Algorithms complexity.

Table 1 summarises the popular algorithms with their respective complexi-

ties. OGD is the most computationally efficient algorithm, but has the weakest75

guarantee. ONS has a better guarantee, but under the condition that the losses

are bounded. The rest of this section is mostly devoted on the discussion of the

three algorithms and their variants mentioned in Table 1.

Researchers have studied the classical problem of online regression exten-

sively in the past. Broadly speaking, there exist two main approaches to tackle80

the online regression problem. The first approach was introduced half a century

ago by [27] for reducing noise via adaptive filtering. The algorithm is known

as Least Mean Squares (LMS), it updates weights by using Gradient Descent

(GD). Later [28, 29] performed analysis on LMS showing that Normalised LMS

(NMLS) is insensitive to scaling of the input. In [26] an algorithm known as85

Recursive Least Squares (RLS) was introduced for online regression. RLS uses

a correction factor to update covariance matrix at each iteration. [16, 30, 31]

theoretically studied a variant of RLS known as AAR − an algorithm with the

strongest theoretical guarantee under this approach.

In contrast to this, [32] studied the bounds of GD based online regression

with square loss. Later [33] replaced GD by Exponentiated Gradient Descent

(EGD). The assumptions made in the GD approach are that for all data points

and weights, L2 norm is bounded by 1. For EGD, it is assumed that L∞ and

L1 norm for data points and weights are bounded by 1. GD based regression

is usually computationally efficient. However, its fundamental disadvantage is

that the difference between the learner and the best linear regression function

(L∗T ) is bounded by the square root of the number of trials T under online
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setting. An example of the upper bound on the cumulative square loss of a

GD-based linear regression algorithm is as follows [32]:

T∑
t=1

(γGD
t − yt) ≤ 9 inf

w∈Rn

(
T∑
t=1

(w′xt − yt)2 + sup
t=1,...,T

||xt||2∞||wt||22

)
(3)

where γGD
t denotes the prediction at step t, yt denotes the outcome at step t,

xt is the input vector of attributes at step t and wt is the weight vector at time

t. For the noise free case, by assuming ||xt||∞ ≤ R, Inequality (3) reduces to

[32]:
T∑
t=1

(γGD
t − yt) ≤ 2.25 inf

θ∈Rn

(
T∑
t=1

(w′xt − yt)2 +R||w||22

)
(4)

Inequality (3) and (4) are not comparable to the bounds obtained by [33], but

EGD has a much smaller loss if only few predictors are relevant to the prediction.

AAR’s upper bound on the cumulative loss of the learning algorithm for the

noise free case under the assumption ||xt||2 ≤ R is not as good as inequality

(4) [32]. However, in online setting like AAR’s where true regression function is

corrupted by Gaussian noise, the upper bounds on the cumulative loss derived

by [32, 33] are of the following type:

LT ≤ L∗T +O(
√
L∗T ) (5)

where LT is the loss of the online algorithm at trial T , L∗T is the loss of the best

linear regression function at trial T . Using the GD and EGD approach, the

difference LT − L∗T is at best bounded by
√
T that requires a priori knowledge

about L∗T , which is not required for AAR. [34] obtained the upper loss bound

using online Newton step of the of type:

LT ≤ L∗T +O(lnL∗T ) (6)

Inequality (6) is overall better than AAR’s upper loss bound when T is large and90

when L∗T grows sub-linearly. This is because for the case L∗T = 0, LT ≤ O(1)

and at most L∗T = O(T ). For AAR’s upper bound on the cumulative loss when

L∗T = 0, is LT − L∗T ≤ O(lnT ). However, upper bound on cumulative loss

proven in [34] requires prior knowledge about ||wt||1 ≤ P and the multiplicative
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factor of their bound is (PR+ Y )2, which is strictly greater than AAR’s upper95

bound on the cumulative loss [13] multiplicative factor of Y 2. AAR and the

algorithm proposed by [34] both have computational complexity of O(n2).

In [35] Coordinate Descent (CD) is used to deal with L1 regularisation.

The distinct feature of the algorithm is that it can handle non-stationarity, but

with no mention of loss bounds. Few algorithms can handle non-stationarity100

and give a competitive prediction. For example, [36] extended AAR by using

[30] methodology and called it LASER. They also considered extension of the

algorithms discussed in [37, 38]. Authors in [39] proved similar bound to LASER

by extending [40] work.

Recently, [41] presented a recursive Bayesian deterministic algorithm that105

performs L1 regularisation by considering the limit of Gibbs sampling, along

with its bounds on convergence. Also, [42] developed an online learning al-

gorithm by replacing the gradient of losses by the sub-gradient of losses in

stochastic gradient descent, showing that such algorithm has a strong theo-

retical guarantee for bounded loss functions and weights. Using topology and110

considering homotopy of LASSO, [43] proposed an online regression algorithm.

However, they did not study the bounds.

We now proceed and formalise the problem, i.e. we present a linear bench-

mark function against which we will compete to achieve the upper bound on

the cumulative loss of the type stated in inequality (6) in a similar setting as115

AAR.

3. Problem formulation

Considering a sequence of instances and outcomes (x1, y1), ..., (xt, yt). Let-

ting wt ∈ Θ = Rn to denote the decision strategy at time t and let wt,i, for

i = 1, ...n denote the i−th component of the decision vector at time t.120

We assume that the input is taken from the L∞− ball {xt ∈ Rn : ||x||∞ ≤ R}

of radius R and the vector wt is indexed by Θ = {wt ∈ Rn : C ≤ ||wt||1 ≤ P}.

Also, assuming the prediction on trial t is given by w′txt.
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We define the following quantities:

bt :=

t∑
s=1

ysxs ∈ Rn (7)

At :=

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
∈ Rn×n, a > 0 (8)

where

Dwt−1
= diag(|wt−1,1|, ..., |wt−1,n|) (9)

letting w0 to be initialised in Rn with uniform distribution. Also, we define the

square loss as follows:

Lt(wt) :=

t∑
s=1

(ys − w′s−1xs)2 (10)

we denote Of(wt) for first derivative and HOf(wt) (H is for Hessian matrix)

for second derivative with respect to wt.125

We aim to compete against IRR, which was suggested as an approximate

solution for the following problem:

inf
wt∈Rn

(Lt(wt) + a||wt||1) (11)

where a > 0. The problem (11) is very difficult to bound because L1 norm is non

differentiable but is convex. Hence, we may use sub-differentials to differentiate,

but the problem is that the sub-differentiation of L1 norm does not lead to a

unique dual vector. So, we compete with the approximation of dual vector

[44, 6, 7]. The method is based on the following approximation:

|wt,i| ≈
(wt,i)

2

|wt−1,i|
(12)

for i = 1, 2, ..., n. Substituting (12) into (11) gives an expression similar to ridge

regression, which is as follows (see Equation (22) in [44]):

wt =
(
X′X + aD−1wt−1

)−1
X′y (13)

where X is the design matrix and y ∈ Rn = (y1, y2, ..., yn). The derivation of

our algorithm will imply that (13) is a solution to the following optimisation
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problem:

inf
wt∈Rn

(
Lt(wt) + a||D−

1
2

wt−1wt||2
)

(14)

for |w1
t−1|, ..., |wnt−1| 6= 0. The restriction of the decision strategy wt not be-

ing zero can be easily lifted by simple algebraic manipulation, which we will

do latter, but for simplicity let’s keep this restriction. Interestingly (13) co-

incides with a more recent algorithm known as Shrinkage via Limit of Gibbs

Sampler (SLOG) presented by [41] who show that under mild assumptions,130

SLOG converges to LASSO. The SLOG algorithm is inspired by the Bayesian

LASSO [45], which focuses on estimating the posterior mean of coefficients us-

ing Gibbs sampling. The high time complexity of the Gibbs sampler makes the

full Bayesian implementation of the LASSO less attractive for practitioners [10].

SLOG improves the computational aspect of Bayesian LASSO without affecting135

the performance.

In our work, we allow CIRR and OSLOG to make only one pass over the

data without making use of the Gibbs sampler. We perform theoretical analysis

in both game-theoretic and Bayesian settings. In order to make our results

more interpretive, we use Cauchy-Schwartz inequality and compete against the

following:

inf
wt∈Rn

(
Lt(wt) + a||D−

1
2

wt−1wt||2
)
≤ inf
wt∈Rn

(
Lt(wt) + aSS||wt||2

)
(15)

where SS is the sum of squares of the diagonal matrix Dwt−1 elements. We

show in Section 4 that inequality (15) holds. However, our bound will imply for

(14). We use (15) for ease of interpretation.

Now that we have formulated the problem, we present next our novel algo-140

rithm CIRR along with its theoretical analysis.

4. Formulation of CIRR

In this section the derivation and analysis of CIRR algorithm are presented.

Inspired by AAR algorithm we propose a novel algorithm Competitive Iterative

Ridge Regression (CIRR). We follow the approach of competitive analysis done145

in [16, 40, 39, 30] .To summarise:

9



• Lemma 1 is the derivation of the weights updating equation and Lemma

2 generalises the weights updating equation

• By using Lemma 1, Theorem 1 derives CIRR prediction at any given trial.

• Lemma 3 is used later in Theorem 2, which discusses the upper bound on150

cumulative square loss of the CIRR algorithm.

• Theorem 3 compares the bound of CIRR with AAR under similar condi-

tions.

Protocol 1 shows the framework under which CIRR work. In this protocol,

we notice that the learner does not know the label at the time of prediction,155

but it knows the moves made by the decision pool wt ∈ Rn at each trial t and

prediction, w′txt, is computed. It is worth noting that our strategy interacts

with the decision pool twice. In contrast to AAR, the learner does not need to

interact with the decision pool explicitly.

Protocol 1 : Learning strategy of CIRR

1: for t = 1, 2, ... do

2: Nature chooses xt ∈ Rn

3: Learner chooses wt ∈ Θ

4: Learner predicts ŷt ∈ R

5: Nature chooses yt ∈ [−Y, Y ]

6: Learner chooses wt ∈ Θ

7: end for

The following Lemma gives the best decision strategy from the decision pool.160

Lemma 1. For all t ≥ 0, f(wt) := a||D−
1
2

wt−1wt||22 + Lt(wt) is minimal at a

unique point wt and the function f(wt) is as follows:

wt = A−1t bt and f(wt) =

t∑
s=1

y2s − btA−1t bt
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such that none of the elements of the weight vector has its absolute value at any

step equal to zero. The definition of bt, At, D
− 1

2
wt−1 and Lt(wt) is given in (7),

(8), (9) and (10) respectively.

Proof. From the definition

f(wt) = a||D−
1
2

wt−1wt||22 +

t∑
s=1

(ys − w′txs)2

= aw′tD
−1
wt−1

wt +

t∑
s=1

(y2s − 2ys(w
′
txs) + (w′txs)(xsw

′
t))

=

t∑
s=1

y2s − 2w′t

t∑
s=1

ysxs + w′t

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
wt

f(wt) =

t∑
s=1

y2s − 2w′tbt + w′tAtwt (16)

f(wt) =

(
t∑

s=1

y2s

)
−

(
t∑

s=1

2ys(w
′
txs)

)
+ w′t

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
wt

We proceed by differentiating with respect to wt (we treat wt−1 as a constant

when differentiating with respect to wt)

Of(wt) = 0−

(
t∑

s=1

2y′sxs

)
+ 2w′t

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
and

HOf(wt) = 2

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
Since Of(wt) = 0−2bt+2Atwt and HOf(wt) = 2At ⇒ f is convex, so to attain

the minimal point wt, setting Of(wt) = 0 i.e.

wt = b′tA
−1
t

Thus,

f(wt) = f(b′tA
−1
t ) =

t∑
s=1

y2s − 2b′tA
−1
t bt + b′tA

−1
t AtA

−1
t bt

f(wt) =

t∑
s=1

y2s − btA−1t bt (17)

this concludes the proof.
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Lemma 1 gives us the prediction of the best decision strategy. Hence, the165

prediction of the learning algorithm is given as follows:

Theorem 1. CIRR predicts ŷt = b′t−1A
−1
t xt at trial t = 1, 2, ...

Proof. To complete Protocol 1, we use Lemma 1 and write:

arg inf
γt∈R

sup
yt∈[−Y,Y ]

(
t∑

s=1

(ys − ŷs)2 −
t∑

s=1

y2s + b′tA
−1
t bt

)

= arg inf
ŷt∈R

sup
yt∈[−Y,Y ]

(
t∑

s=1

(ys − ŷs)2 −
t∑

s=1

y2s + (bt−1 + ytxt)
′A−1t (bt−1 + ytxt)

)

= arg inf
ŷt∈R

sup
yt∈[−Y,Y ]

(
t∑

s=1

(ys − ŷs)2 −
t∑

s=1

y2s + bt−1A
−1
t bt−1

+ 2ytb
′
t−1A

−1
t xt + y2t x

′
tA
−1
t xt

)
(18)

=⇒ arg inf
γt∈R

sup
yt∈[−Y,Y ]

(
−2ytŷt + ŷ2t + 2ytb

′
t−1A

−1
t xt + y2t x

′
tA
−1
t xt

)

= arg inf
ŷt∈R

sup
yt∈[−Y,Y ]

(
2yt(b

′
t−1A

−1
t xt − ŷt) + y2t (x′tA

−1
t xt) + ŷ2t

)
(19)

Given yt ∈ [−Y, Y ] and that At is positive definite, asserts ŷt should be chosen

such that:

2Y
(
bt−1A

−1
t xt − γt

)
+ γ2t (20)

(20) is minimised. Since:

• Case 1:

bt−1A
−1
t xt ∈ [−Y, Y ]. If bt−1A

−1
t xt ≥ Y than (20) is decreasing when170

ŷt ≤ Y and increasing when ŷt ≥ Y , similar arguments holds for the case

when bt−1A
−1
t xt ≥ −Y , thus for (20) minimum is attained at Y .

• Case 2:

ŷt ≤ bt−1A−1t xt attains minimum on the domain min(Y, bt−1A
−1
t xt).

• Case 3:175

ŷt ≥ bt−1A−1t xt attains minimum on the domain max(−Y, bt−1A−1t xt).
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Thus, for ŷt = bt−1A
−1
t xt (18) attains minimum.

Before we upper bound the cumulative loss of the CIRR, we state two simple

Lemmas to help our cause.

Lemma 2. For all t = 1, 2, ..., a > 0(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)−1
= D

1
2
wt−1

(
aI +D

1
2
wt−1

(
t∑

s=1

xsx
′
s

)
D

1
2
wt−1

)−1
D

1
2
wt−1

where Dwt−1
= diag(|wt−1,1|, ..., |wt−1,n|).180

Proof. From the properties of a diagonal matrix, we write(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)−1
=

(
aD
− 1

2
wt−1D

− 1
2

wt−1 +

t∑
s=1

xsx
′
s

)−1

= D
1
2
wt−1

(
aI +D

1
2
wt−1

(
t∑

s=1

xsx
′
s

)
D

1
2
wt−1

)−1
D

1
2
wt−1

By incorporating the prediction of the learner we have an explicit algorithm

for CIRR:

Algorithm 1 : The CIRR algorithm

1: Initialise: a > 0,Σ = 0n×n, b = 0n×1 and w0 = 1 ∈ Rn×1.

2: for t = 1, 2, ..., do

3: Read xt ∈ Rn

4: Dwt−1 = diag(|wt−1,1|, ..., |wt−1,n|)

5: Σ = Σ + xtx
′
t

6: A−1 =
√
Dwt−1

(
aI +

√
Dwt−1

A
√
Dwt−1

)−1√
Dwt−1

(Lemma 2)

7: wt = A−1b (Lemma 1)

8: ŷt = w′txt

9: Read yt ∈ R

10: b = b+ ytxt

11: Update wt = A−1b

12: end for
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Remark 1. The algorithm performs sequentially by processing each data point

at each trial. At trial t = 1 the algorithm receives x1 ∈ Rn, and outputs ŷ1 =185

w′0x1, then computes Dwt−1
= diag(|w0,1|, ..., |w0,n|). This is a diagonal matrix,

on the diagonal is w0 ∈ Rn. The algorithm than computes the co-variance matrix

Rn×n i.e. x1x
′
1 (where x1 is a vector of n×1, so its transpose is 1×n and results

in n×n matrix), followed by inversion and multiplication by Dwt−1
. Notice, the

co-variance matrix is symmetric-semi-positive definite, but the inversion is done190

for positive definite (addition of aI ensures that the inverse exist for all trials).

Now, the algorithm receives the actual observation after which it updates w and

the process continues for t = 2, 3, ....

Algorithm 1 is applicable even when there are components that are exactly

zero in the weight vector wt.195

Lemma 3. For D ∈ Rm×n with entries aij and w ∈ Rn with entry wj

||Dw||22 ≤ ||D||2F ||w||22

Proof. From Cauchy-Schwartz inequality, we have: m∑
i=1

n∑
j=1

(aij)
2

 n∑
k=1

wk =

m∑
i=1

 n∑
j=1

(aij)
2

n∑
k=1

(wk)2

 ≥ m∑
i=1

 n∑
j=1

aijwj

2

Remark 2. For n = m in Lemma 3 m∑
i=1

m∑
j=1

(aij)
2

 m∑
k=1

wk ≥
m∑
i=1

 m∑
j=1

aijwj

2

Notice ||D||2F by definition is Tr(DDH) (where Tr denotes the trace of a matrix

and DH is the conjugate transpose). In other words ||D||2F is the Sum of Squares

(SS) of the absolute value of the entries of D. Also, if D is a diagonal matrix

then ||D||2F is simply the sum of squares of diagonal elements. This justifies the200

Inequality (15).

We now prove the upper loss bound on Algorithm 1.

14



Theorem 2. For any point in time t = 1, 2, ..., T , the foloowing holds:

LT (CIRR) ≤ inf
wT∈Rn

(
LT (wT ) + a||D−

1
2

wt−1wT ||22
)

+ Y 2 ln det

(
1

a
AT

)
(21)

where a > 0, Y ≥ 0. if ||xt||∞ ≤ R and C ≤ ||wt||1 ≤ P ∀t such that C 6= 0,

|wt,i| 6= 0 ∀i = 1, 2, ..., n and n is some finite positive integer then:

LT (CIRR) ≤ LT (wT ) + aP 2C−1 + Y 2n ln

(
a+ CTR2

aC

)
(22)

Proof. From Theorem 1 in [16] and Theorem 3 in [30] the upper bound on the

cumulative loss of AAR is as follows:

LT (AAR) ≤ inf
wT∈Rn

(
w′TBTw − 2w′bT +

T∑
t=1

y2t

)
+ Y 2 ln det

(
1

a
BT

)
(23)

where BT =
(
aI +

∑T
t=1 xtx

′
t

)
and w′TBTwT − 2w′T bT +

∑T
t=1 y

2
t = LT (wT ) +

||wT ||22, here bT and LT (wT ) are defined as (7) and (10) respectively. Notice

(23) is only true for positive definite matrices and AT is positive definite so, we

replace Y 2 ln det
(
1
aBT

)
with Y 2 ln det

(
1
aAT

)
. To elaborate further, expanding

and performing some algebraic manipulation on the function f(wt) in Lemma

1 to obtain:

y2t x
′
tA
−1
t−1xt + bt−1(A−1t xtx

′
tA
−1
t −A−1t−1 +A−1t )bt−1 (24)

Since, At−1 − At = xtx
′
t, so A−1t−1 − A−1t = A−1t xtx

′
tA
−1
t−1 and consequently

A−1t−1 − A
−1
t − A−1t xtx

′
tA
−1
t = A−1t xtx

′
tA
−1
t xtx

′
tA
−1
t . Thus, (24) can be written

as:

y2t x
′
tA
−1
t xt − (x′tA

−1
t−1xt)b

′
t−1A

−1
t xtx

′
tA
−1
t bt−1 (25)

It is easy to see that the term (x′tA
−1
t−1xt)b

′
t−1A

−1
t xtx

′
tA
−1
t bt−1 in (25) can be

written as (x′tA
−1
t−1xt)ŷ

2
t and,

y2t x
′
tA
−1
t xt − (x′tA

−1
t−1xt)ŷ

2
t ≤ Y 2xtA

−1
t xt

summing over t = 1, 2, ..., T leads to the following expression:

LT (CIRR)− inf
wT∈Rn

(
LT (wT ) + a||D−

1
2

wt−1wT ||22
)
≤ Y 2

T∑
t=1

xtA
−1
t xt

15



Notice since at t = 0, Dwt−1 = I, where I denotes the identity matrix. So,

ln det 1
aA0 = 0. For the case when t = 1, 2, ..., T we need to show that x′tA

−1
t xt ≤

ln detAt

detAt−1
. For xt = 0, clearly x′tAtxt < 1 holds and for xt 6= 0 noticing205

(xtAt−1xt)
2 < x′tA

−1
t xt. Now since At is symmetric positive definite thus the

determinant of such matrix is bounded by the product of the entries on the

diagonal (see for example [46] Theorem 7 from Chapter 2). Hence, xtA
−1
t xt ≤

ln detAt

detAt−1
holds, which indeed shows that by replacing Y 2 ln det

(
1
aBT

)
with

Y 2 ln det
(
1
aAT

)
we obtain the bound stated in (21), when AT is positive definite.210

We use the definition of (7), (8), (9) and (10) to write the following:

w′TATwT − 2w′T bT +

T∑
t=1

y2t = a||D−
1
2

wT−1wT ||22 + LT (wT )

To prove (22) we first need to show the following holds:

w′TATwT − 2w′T bT +

T∑
t=1

y2t ≤ aSS||wT ||22 + LT (wT )

From Lemma 3, we know that:

||D−
1
2

wT−1wT ||22 ≤ SS||wT ||22 ≤
P 2

C

By assuming that ||xt||∞ ≤ R and C ≤ ||wt||1 ≤ P for t = 1, 2, ..., T , we

continue as follows:

ln det

(
1

a
AT

)
= ln det

(
aD−1wT−1

+

T∑
t=1

xtx
′
t

)

≤
n∑
i=1

ln

(
C−1 +

TR2

a

)
≤ n ln

(
C−1 +

TR2

a

)
= n ln

a+ CTR2

aC

This concludes the proof.

We may compare (22) with the following [16]:

LT (AAR) ≤ LT (wT ) + aP 2 + nY 2 ln

(
1 +

TR2

a

)
(26)

LT (ORR) ≤ LT (wT ) + aP 2 + 4nY 2 ln

(
1 +

TR2

a

)
(27)
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It is worth noting that AAR considers

inf
wt∈Rn

(
Lt(wt) + a||wt||22

)
(28)

whereas CIRR considers (14). Notice we are scaling wt, i.e.

Lemma 4. For all t = 1, 2, ..., T , then

||D−
1
2

wt−1wt||22 ≤ ||wt||22

provided that every element of wt ≥ 1.

Proof. Since every element of wt ≥ 1, and 0 < ||D−
1
2

wt−1 ||22 ≤ 1. Therefore the

above inequality holds.215

The following Theorem presents a scenario when the CIRR upper bound on

cumulative loss is better than AAR (and ORR).

Theorem 3. If, ||xt||∞ ≤ R and C ≤ ||wt||1 ≤ P such that C ≥ 1, a > 0, and

n ∈ N+, then ∀t the following holds

LUT (CIRR) ≤ LUT (AAR)

where LUT denotes the upper cumulative square loss bound

Proof. Let R∗T (AAR) = LUT (AAR)− LT (wT ) and R∗T (CIRR) = LUT (CIRR)−

LT (wT ). We proceed by showing R∗T (CIRR) ≤ R∗T (AAR) i.e.

aP 2C−1 + nY 2 ln

(
a+ CTR2

aC

)
− aP 2 − nY 2 ln

(
a+ TR2

a

)
≤ 0

aP 2

(
1

C
− 1

)
+ nY 2 ln

(
a+ TCR2

aC + TCR2

)
≤ 0

Since, C ≥ 1 and a, n > 0, so P 2( 1
C − 1) ≤ 0. Also, we have a + TR2 ≤

aC + TCR2 =⇒ ln a+TCR2

aC+TCR2 ≤ 0, thus the above inequality holds. Since220

R∗T (ORR) ≥ R∗T (AAR) =⇒ R∗T (CIRR) ≤ R∗T (ORR).
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5. Formulation of OSLOG

In this section we discuss Bayesian variant of Algorithm 1. We show that

the Bayesian interpretation of CIRR leads to SLOG in online setting, hence we

call the Bayesian version of CIRR as OSLOG. We proceed by briefly discussing225

SLOG.

SLOG is a batch learning algorithm that makes multiple passes over the

data until convergence to LASSO. We now allow SLOG to make only one pass

over the data. To obtain prediction at time T + 1 we multiply SLOG’s weight

updating equation (see Equation (6) in [41]) at time T by xT+1(
T∑
t=1

xtyt

)′D 1
2
wT−1

(
aI +D

1
2
wT−1

(
T∑
t=1

xtx
′
t

)
D

1
2
wT−1

)−1
D

1
2
wT−1

xT+1

where DwT−1
= diag(|wT−1,1|, ..., |wT−1,n|). To show that SLOG and OSLOG’s

weight updating equation is the same, we derive OSLOG’s updating equation

by Protocol 2. The difference between Protocol 1 and Protocol 2 is that the

prediction in Protocol 1 is made before updating the weight, whereas the learner230

in Protocol 2 only needs to interact with the decision pool once.

Protocol 2 : Learning strategy of OSLOG

1: for t = 1, 2, ... do

2: Nature chooses xt ∈ Rn

3: Learner prediction w′xt ∈ R

4: Nature chooses yt ∈ [−Y, Y ]

5: Learner chooses weights wt ∈ Θ

6: end for

For better readability the overview of the following Lemmas, Theorems and

Corollaries is as follows:

• Lemma 5 derives the weight updating equation for OSLOG.

• Theorem 4 presents OSLOG’s upper bound on cumulative square loss.235

• Theorem 5 compares OSLOG’s guarantee with AAR’s.
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• Corollary 1 highlights an advantage of CIRR over OSLOG.

Lemma 5. If an algorithm follows Bayesian strategy with likelihood of p(yt|wt) ∼

N(w′txt,
1
2η ), where prior over wt is as follows:

p(wt) = exp
(
−aηw′tD−1wt−1

wt

)
such that |wt−1,1|, ..., |wt−1,n| 6= 0, w0 is initialised with uniform distribution and

a, η > 0, then following holds:

wt+1 =

(
t∑

s=1

xsys

)′D 1
2
wt−1

(
aI +D

1
2
wt−1

(
t∑

s=1

xsx
′
s

)
D

1
2
wt−1

)−1
D

1
2
wt−1


(29)

Proof. The Bayesian strategy implies the posterior to be proportional to the

likelihood times the prior i.e.

p(w|y) ∝ p(y|w)p(w)

p(w|y) ∝ exp

(
−aηw′tDwt−1

wt − η
T∑
t=1

(
w′txt − yt)2

))

p(wt|yt) ∝ exp
(
−aηw′tD−1wt−1

wt − ηLt(wt)
)

e
−aηw′tD

−1
wt−1

wt−ηLt(wt) ∝ e−ηw
′
t

(
aD−1

wt−1
+
∑t

s=1 xsx
′
s

)
wt+2w′tη(

∑t
s=1 ysxs)

−aηw′tD−1wt−1
wt − ηLt(wt) ∝ −ηw′t

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
wt + 2w′tη

(
t∑

s=1

ysxs

)
By cancelling η and multiplying with the negative sign on both sides we write

the above expression as follows:

aw′tD
−1
wt−1

wt + ηLt(wt) ∝ w′t

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
wt − 2wt

(
t∑

s=1

ysxs

)
(30)

Minimising the right hand side of the proportionality (30) gives:

inf
wt

(
||aD−

1
2

wt−1 ||22 + Lt(wt)
)

and minimising the expression on the left hand side of the proportionality (30)

gives:

inf
wt

(
w′t

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
wt + 2

(
t∑

s=1

ysxs

))
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=⇒ Of(wt) = −

(
t∑

s=1

2ysxs

)
+ 2w′t

(
aD−1wt−1

+

t∑
s=1

xsx
′
s

)
(31)

Setting Of(wt) = 0 and applying Lemma 2, we obtain (29).

Algorithm 2 : The OSLOG algorithm

1: Initialise: a > 0,Σ = 0n×n, b = 0n×1 and w0 = 1 ∈ Rn×1

2: for t = 1, 2, ... do

3: Read xt ∈ Rn

4: ŷt = w′xt

5: Dwt−1
= diag(|wt,1|, ..., |wt,n|)

6: Σ = Σ + xtx
′
t

7: A−1 =
√
Dwt−1

(
aI +

√
Dwt−1Σ

√
Dwt−1

)−1√
Dwt−1 (Lemma 2)

8: Read yt ∈ R

9: b = b+ ytxt

10: Update w = A−1b (Lemma 5)

11: end for

Remark 3. The algorithm performs sequentially by processing each data point

at each trial see Remark 1. However, notice after arrival of x1 ∈ Rn, predic-240

tion is ŷ1 = 0. So, at the first trial the algorithm does not make use of x1.

This philosophically and mathematically differs from CIRR. Here the algorithm

updates after prediction.

Theorem 4. For any point in time t = 1, 2, ..., T

LT (OSLOG) ≤ inf
wT∈Rn

(
LT (wT ) + aSS||wT ||22

)
+ 4Y 2 ln det

(
1

a
AT−1

)
(32)

where a > 0, Y ≥ 0 ,n ∈ N+, ||xt||∞ ≤ R and C ≤ ||wt||1 ≤ P , such that

C 6= 0, |wt,i| 6= 0 ∀i = 1, 2, ..., n then ∀t:

LT (OSLOG) ≤ LT (wT ) + aP 2C−1 + 4Y 2n ln

(
C−1 +

TR2

a

)
(33)

provided that all yt ∈ [−Y, Y ].
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Proof. From Remark 3 in [16], we know updating weights in Algorithm 2 after245

making the prediction is 4 times worse than updating weights before making

the prediction. The rest of the proof follows same arguments as Theorem 2.

The following Theorem presents a scenario when OSLOG’s upper bound is

better than ARR and ORR.

Theorem 5. If ||xt||∞ ≤ R and C ≤ ||wt||1 ≤ P such that C > 1, a > 0, and

n is some positive integer, then ∀t the following holds:

LUT (OSLOG) < LUT (AAR)

where LUT denotes the upper cumulative square loss bound.250

Proof. The proof is analogous to Theorem 3.

Remark 4. The regret of OSLOG is smaller than that of the regret of AAR

when C > 1.

It is also possible to write an explicit relationship between OSLOG and

CIRR. Using Sherman-Morrison formula as used in [33] leads to the following255

corollary

Corollary 1. For all t = 1, 2, ..., T , the following result holds:

γT =
sT

1 + x′TD
1
2
wT−2

(
aI +D

1
2
wT−2

∑T−1
t=1 xtx′tD

1
2
wT−2

)−1
D

1
2
wT−2xT

where γT denotes the prediction of CIRR and sT denotes the prediction of

OSLOG at time T .

Proof. We proceed as follows:

γT =

(
T−1∑
t=1

ytxt

)′
D

1
2
wT−1

(
aI +D

1
2
wT−1

T∑
t=1

xtx
′
tD

1
2
wT−1

)−1
D

1
2
wT−1xT

=

(
T−1∑
t=1

ytxt

)′
D

1
2
wT−2

(
aI +D

1
2
wT−2

T−1∑
t=1

xtx
′
tD

1
2
wT−2

)−1
D

1
2
wT−2xT
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−

(
T−1∑
t=1

ytxt

)′ (
D

1
2
wT−2

(
aI +D

1
2
wT−2

∑T−1
t=1 xtx

′
tD

1
2
wT−2

)−1
D

1
2
wT−2xT

)
1 + x′TD

1
2
wT−2

(
aI +D

1
2
wT−2

∑T−1
t=1 xtx′tD

1
2
wT−2

)−1
D

1
2
wT−2xT

×

(
D

1
2
wT−2

(
aI +D

1
2
wT−2

∑T−1
t=1 xtx

′
tD

1
2
wT−2

)−1
D

1
2
wT−2xT

)′
1 + x′TD

1
2
wT−2

(
aI +D

1
2
wT−2

∑T−1
t=1 xtx′tD

1
2
wT−2

)−1
D

1
2
wT−2xT

xT

Noticing,

sT =

(
T−1∑
t=1

ytxt

)′
D

1
2
wT−2

(
aI +D

1
2
wT−2

T−1∑
t=1

xtx
′
tD

1
2
wT−2

)−1
D

1
2
wT−2xT

and by some simple algebraic manipulation, we obtain

γT =
sT

1 + x′TD
1
2
wT−2

(
aI +D

1
2
wT−2

∑T−1
t=1 xtx′tD

1
2
wT−2

)−1
D

1
2
wT−2xT

(34)

Remark 5. Corollary 1 gives an expression that connects CIRR and OSLOG.260

It also gives the limiting behaviour of their predictions. As ||xT || → ∞, γT → 0

whereas sT → ∞. The advantage of CIRR over OSLOG is that CIRR is less

likely to overfit. AAR has similar advantage over ORR, but CIRR and AAR

might be more likely to underfit.

6. Empirical study265

Having explained CIRR and OSLOG algorithms and their upper bound loss,

in the following we perform experiments to investigate their performance. In

particular, we check the performance against statistically optimal linear model.

To illustrate better the discussion, we use two real-world data sets for which the

model is linear in the parameters (coefficients/weights) and a third one which270

is synthetic.

Before delving into the details, we make some comments on the time com-

plexity of the statistical and online models. The most computationally inten-

sive calculation in the computation of the statistically optimal regression model
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is the calculation of design matrix with its transpose, which can be done in275

O(n2m) for an n×m matrix. The application of statistically optimal model

to sequentially arriving data requires an addition of data point in Rn at each

trial. Moreover, the statistically optimal model has no performance guarantee.

In contrast, the most computationally intensive computation (by application

of Sherman-Morrison formula) of the proposed online regression algorithms is280

O(n2) and they do not need to row bind data points at each trial. Thus, they are

efficient is terms of memory and time, while possessing a performance guarantee.

Linear regression assumes that the model is linear in parameters and does not

contain influential outliers that affect the prediction quality. They also assume

normality in residuals and homoscedasticity which is not about the predictive285

performance, but rather the correctness of the inference 1. In our work, we

consider datasets that present sparse adaptive regression problem.

We perform all experiments by splitting data in training (25%) and testing

(75%). We tune the parameter a on training data by grid search, than fix the

parameter a for testing. Both training and testing is done in online mode. The290

explanation given under synthetic data heading will discusses the process of

training and testing in more detail. The code of the mentioned algorithms is

part of the online machine learning library SOLMA2. To reproduce the results,

please see Github link3.

Synthetic data295

We perform experiments to illustrate the usefulness of the proposed algo-

rithms, OSLOG and CIRR. We use an adaptive artificial data set described

in [48, 49]. The attributes xt,1, xt,2, ..., xt,10 are generated independently and

1In [47] a comprehensive empirical study was conducted (using 42 datasets) showing that

the linear methods (Least squares, LASSO, etc.) outperform many of the modern methods

(Regression trees, ANN, etc.) on linear heteroscedastic data, despite the fact that homoscedas-

ticity is an explicit assumption in the linear methods.
2https://github.com/proteus-h2020/proteus-solma
3https://github.com/JamilWaqas/CR
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uniformly over [0, 1] for 40768 data points. The value of the output y is:

yt = 10 sin(πxt,1xt,2) + 20(xt,3 − 0.5)2 + 10xt,4 + 5xt,5 + εt (35)

where εt ∼ N (0, 1). The Friedman function (35) is one of the most used function

for data generation as it contains linear and non-linear relations between input

and output (it is still linear in parameters). Also, only half of the attributes

contribute towards the correlation with the output. We fit six online regression

algorithms (CIRR, OSLOG, AAR, ORR, OGD, ONS) on the data and compare

their prediction results against the Best Linear Unbiased Estimator (BLUE)

x′tw
BLUE where:

wBLUE = (X′X)−1X′Y (36)

Notice that the BLUE solution considers the entire data X ∈ Rn×m and Y ∈

Rn, which is not possible when forecasting. Table 2 reports RMSE, R2, MAE

and error quantiles denoted by LQE (25%), MQE (50%) and UQE (75%) for

30576 data points. We use 25% (10192 data points) of the dataset to tune the

parameter a > 0 require for initialisation of Algorithm 1 and 2. The tuning is300

done by performing grid search in the online mode. The length of the grid is

selected arbitrarily, meaning that the selection is made by, for instance, assigning

the size of the grid to 1 to 10 with 0.1 increment. If 1.5 comes out as the

optimum value, then the grid’s size is set to 0.1 to 1.5 with increment of 0.01

and so on. The value of a resulting in the least square loss on 25% of the305

data is fixed for the 75% of the data. Also, during the tuning stage, we observe

that on the 10192th (final trial of 25%) trial CIRR, OSLOG and AAR give more

importance to xt,1, xt,2, xt,4 and xt,5, and attributes weights are (approximately)

w10192,1 = 7, w10192,2 = 7, w10192,4 = 10 and w10192,5 = 5. For this data ORR

assigns very high weights, due to the outliers, the minimum weight ORR assigns310

is of 30004. We Observe RMSE of AAR, OSLOG and CIRR on the 25% of

the data and notice that despite assigning similar weights, RMSE of AAR is

much higher than CIRR and OSLOG. Theorem 3 and 5 indicates when C ≤

||w||1 ≤ P and C > 1 CIRR and OSLOG outperform ORR and AAR. So,

the CIRR, OSLOG and AAR correctly identify significant weights except for315
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the 3rd attribute weight. None of the attributes are set to 0. So, we do not

remove any attributes to avoid the effect on the forecasting quality. Since ε in

(35) and attributes xt,3, xt,6, xt,7, xt,8, xt,9 and xt,10 in (35) are in [0, 1], they

are somewhat helpful for the adjustment of the noise. Also, xt,3 is part of the

model see (35). However, if the computational efficiency is a priority, then less320

significant attributes can be removed, which will lead to inversion of 4×4 matrix

at each trial instead of inverting a 10 × 10 matrix at each trial. By removal of

less significant attributes, we obtain an RMSE of 3.41 for CIRR and 21.12 for

OSLOG. The OGD and ONS perform a bit worse than CIRR and OSLOG when

significant attributes are removed.325

Table 2: Comparison of the algorithms using synthetic data.

Algorithm RMSE R2 MAE LQE MQE UQE

AAR 1.19× 105 9.69× 10−4 1.02× 105 −146305.37 −93971.93 −46701.88

ORR 4.73× 105 1.69× 10−2 3.70× 105 −518833.1 −303995 −145757.1

CIRR 2.65 0.72 2.04 −1.53 0.12 1.76

OSLOG 2.63 0.72 2.03 −1.56 0.09 1.73

OGD 2.91 0.67 2.26 −1.75 0.08 1.93

ONS 2.66 0.72 2.06 −1.55 0.11 1.77

BLUE 2.63 0.72 2.03 −1.56 0.10 1.75

In the above data we place a couple of anomalies. By doing so, the RMSE of

OSLOG, OGD and ONS shoots up, while the RMSE of CIRR changes to 3.022,

suggesting that CIRR is less sensitive to anomalies. For the above data L1 and

L2 do not perform4 as well as BLUE (linear model). We used R glmnet: Lasso

and Elastic-Net Regularised Generalised Linear Models [51, 52] to fit L1 and L2330

regression.

4Since we use the full data, adding regularisation leads to higher RMSE, R2 and MAE.

Regularisation helps reduce the over-fitting [50].
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Real-world data

In order to further investigate the performance of the proposed algorithm,

we use two real-world datasets: Istanbul Stock Exchange5 (ISE) and Ailerons6

(F −16) data. Both datasets present an adaptive regression prediction problem.335

The ISE data has 536 observations with 8 attributes: S&P 500 Index, Deutscher

Aktien Index, FTSE 100 Index, Nikkel Index, Bovespa Index, Bovespa Index,

MSCI Europe Index and MSCU Emerging Markets Index. The goal is to make

the prediction of ISE in USD (which is the output variable). On the other hand,

F − 16 data consists of 13750 observations with a total of 40 attributes that340

describe the status of the F −16 and the goal is to predict control action on the

ailerons of the F − 16 data.

Table 3: Comparison of the algorithms using real-world data.

Algorithm RMSE R2 MAE LQE MQE UQE

Data: ISE

OGD 0.19× 10−1 5.49× 10−1 0.14× 10−1 −8.40× 10−3 2.52× 10−3 1.24× 10−2

ONS 0.19× 10−1 5.50× 10−1 0.14× 10−1 −8.42× 10−3 2.50× 10−3 1.22× 10−2

AAR 1.87× 10−2 3.61× 10−1 1.39× 10−2 −8.46× 10−3 2.49× 10−3 1.18× 10−2

ORR 5.67× 10−2 1.69× 10−1 2.41× 10−1 −1.26× 10−1 5.57× 10−4 1.28× 10−2

CIRR 6.30× 10−3 9.00× 10−1 4.56× 10−3 −3.85× 10−3 2.95× 10−4 3.22× 10−3

OSLOG 1.05× 10−2 7.46× 10−1 4.44× 10−3 −3.72× 10−3 2.91× 10−4 2.80× 10−3

BLUE 4.81× 10−3 9.35× 10−1 3.74× 10−3 −3.11× 10−2 −5.55× 10−6 4.99× 10−3

Data: F−16

OGD 5.32× 10−4 1.73× 10−1 3.84× 10−4 −4.96× 10−4 −2.33× 10−4 2.22× 10−5

ONS 2.73× 1005 2.48× 10−4 3.22× 1004 −1.05× 10−3 −1.52× 10−3 6.51× 10−3

AAR 7.61× 10−1 5.25× 10−5 2.71× 10−1 −9.12× 10−2 8.29× 10−3 1.05× 10−1

ORR 2.58× 1007 2.49× 10−4 2.00× 1006 −2.24× 1004 3.60× 1003 8.99× 1004

CIRR 1.97× 10−4 7.89× 10−1 1.41× 10−4 −8.57× 10−5 2.23× 10−5 1.16× 10−5

OSLOG 2.81× 1000 1.78× 10−5 3.80× 10−2 −7.35× 10−5 3.00× 10−5 1.23× 10−4

BLUE 1.69× 10−4 8.41× 10−1 1.25× 10−4 −9.08× 10−5 2.79× 10−6 9.64× 10−5

Table 3 compiles the results of the six algorithms when using the real-world

data. For ISE during the tuning stage SLOG and CIRR set wt,i = 0 for the

5https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
6http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

26

https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html


Nikkel Index, so we removed this attribute for CIRR and OSLOG. All algo-345

rithms, except CIRR, fail to perform well on the ISE data. In the case of F-16

data, OSLOG and CIRR assign wt,1, ..., wt,10 = 0 to all attributes other than

the first 1 − 10 and 39th attributes. ORR and AAR assign near zero weight

to 26th,30th, 32nd and 34th during the tuning phase, so we remove these at-

tributes and run the algorithms on 75% of the data. OGD and ONS does not350

shrink any attributes weights close enough to zero.

In this experimental setting, CIRR and OSLOG select appropriate attributes

during the tuning phase on these datasets, but on testing phase when the tuning

parameter is fixed, OSLOG predictive ability is not as good as CIRR, meaning

that OSLOG is more sensitive to the tuning parameter like AAR, ORR, ONS355

and OGD. Also based on these experiments, AAR, ORR, OGD and ONS’s abil-

ity to perform shrinkage is no where near as impressive as CIRR and OSLOG’s.

7. Conclusions

In this paper, we proposed two novel online algorithms, called CIRR and

OSLOG. The theoretical analysis shows that CIRR and OSLOG have a better360

upper bound on the cumulative loss than AAR and ORR under certain circum-

stances and CIRR has a better upper bound on the cumulative loss than OSLOG

under all circumstances. Moreover, the presented algorithms have similar type

of bound as ONS (see Table 1), but without bounding the losses.

The empirical analysis indicates that OSLOG and CIRR have a different365

learning path and better computational efficiency in comparison to ORR, ONS,

OGD and AAR. Furthermore, OSLOG and CIRR are able to perform model

selection. In particular, CIRR is able to predict well under wider range of

circumstances comparatively.

In the future, we will investigate the possibility of extending OSLOG and370

CIRR to the non-stationary case. From this piece of work, we were unable to find

any circumstances where OSLOG can outperforms its competitors. However, it

is difficult to make any conclusive remarks based on this work, a more insightful
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theoretical and empirical study is required. Perhaps, empirically, one could

try to answer the previous question by using different settings and different375

types of data sets, and theoretically studying lower bounds might be beneficial.

The adjustment of the tuning parameter in online manner for these regression

algorithms remains an important open question, along with the tightness of the

upper loss bounds.
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